

Input voltage	Output voltage	Output current	Output power	Efficiency	Size
10-23V DC	24V DC	1 Amps	24 Watts	96.5%	64*57*22mm

The WG-12S2401 is a Non-isolated DC/DC boost converter that uses a synchronous rectification technology, and features high efficiency and power density. It has the dimensions of 64mm x 57mm x 22mm (2.52 in. x 2.24 in. x 0.86 in) and provides the rated output voltage of 24 V and the maximum output current of 1A.

Features

- Design meeting RoHS / CE
- High efficiency: 96.5% (@ 12Vin, 25℃)
- Mount in almost any location, high reliability
- Non-isolated between input and output
- Support -40 °C environment
- 100% full load burn-in test
- Over load, Low voltage protections
- Die-cast aluminum shell, epoxy potting
- Waterproof level IP68
- 1 Year warranty

Model naming method

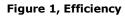
WG-12S2401

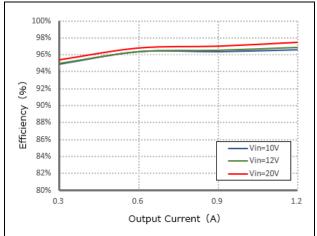
Applications

- Industrial
- Alternative Energy
- Golf Cart
- Forklift
- Electromotor
- Telecommunications
- Boat & Yacht
- Medical
- Dual battery system
- LED Marketplaces and so on.
- 12 : Input voltage
- **S** : Single output type
- 24 : Output voltage
- **01**: Output current

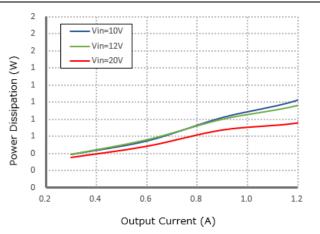
Electrical Specifications

Conditions: TA = 25 °C (77°F), Airflow = 1 m/s (200LFM), Vin =12V, Vout =24V, unless otherwise specified.


Parameter	Min.	Тур.	Max.	Units	Remarks	
Absolute maximum rati	ngs					
Operating ambient						
temperature	-40	-	+55	°C		
Shell ambient						
temperature	-40	-	80	°C		
Storage temperature	-55	-	100	°C		
Operating humidity	5	-	95	%	Non-condensing	
Atmospheric pressure	62	-	106	Кра		
Altitude	-	-	4000	m		
Cooling way	-	-	-		Natural cooling	
Input characteristics			1	I		
Input voltage	10	12	23	V	-	
Max. input voltage	-	-	23	V	Continuous	
Undervoltage shutdown	8.0	8.2	8.5	V	Automatic recovery	
Undervoltage recovery	9.6	9.8	10.0	V	Automatic recovery	
Max. input current	-	_	2.8	А	Vin =9V; Iout =1A	
No load current	-	20	30	mA	Vin = 12V	
Positive electrode cable	22	_	_	AWG	If the wire length is greater than 50cm, it is	
Negative electrode cable	22	-	-	AWG	recommended to use a thicker wire diameter.	
Enable PIN cable	-	NA	_	AWG	If the product has this feature	
Fuse	-	20	-	Α	Input positive has built-in fuse	
Output characteristics						
Efficiency	-	96.5	-	%	Vin =12V; Iout =1A	
Output voltage	23.8	24.2	24.5	V	Vin =12V; Iout =1A	
Regulator accuracy	-	±3	_	%		
Voltage regulation	-	±2	-	%		
Load Regulation	-	±2	-	%		
Overvoltage protection	-	NA	-	V		
Output current	0	-	1	Α		
Overcurrent protection	3.8	4.2	4.6	А	Vin=12V	
External capacitance	-	NA	-	μF	Don't need	
	-	260	300	mVp-p	Vin =10-23V; Iout=1A,	
Output ripple and noise					Oscilloscope bandwidth: 20 MHz	
Output voltage rise time	-	13	20	mS		
Boot delay time	-	20	30	mS		
Out voltage overshoot	-	-	5	%	Vin =12V, 50%-75% Load step	
Over temperature					Challense	
protection	-	NA	-	°C	Shell test	
Short circuit protection	-	NA	-		Output can't shorted for boost converters	
Positive electrode cable	22	-	-	AWG	If the wire length is greater than 50cm, it is	
Negative electrode cable	22	_	_	AWG	recommended to use a thicker wire diameter.	



Safety and EMC feature	S				
Anti-electric Strength	Input to Output	-	V		
	Input to Shell ≥500		V	- Leakage current \leq 3.5mA, 1min,	
	Output to Shell	≥500	V	– no breakdown, no arcing	
	Input to Output		MΩ	Test voltage = 500V	
Insulation resistance	Input to Shell	≥10			
	Output to Shell				
Other characteristics					
Weight	≤ 120		g		
Package	White box				
MTBF	≥200,000		н	Vin= 12V; Iout= 1A	
Switching frequency	130±10		KHz		


Characteristic Curves

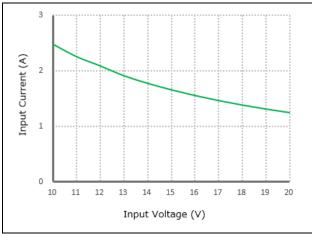

Conditions: TA = $25^{\circ}C$ (77°F), Vin = 12 V, Vout = 24 V , unless otherwise specified.


Figure 3, Input V-I, Iout=1A

Typical Waveforms

Conditions: TA = 25° C (77° F), Vin = 12V, unless otherwise specified.

Figure 4, 25% - 50% load dynamic

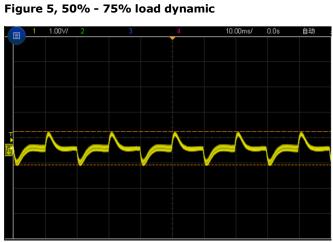
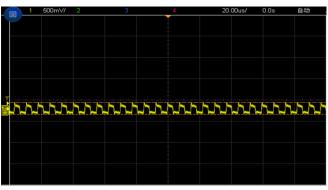
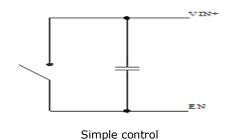
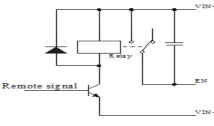



Figure 6, Output voltage established (Iout = 1A)





Feature Description

Remote On/Off (EN) (Optional)					
Logic Enable	Low level (0 - 10Vdc)	High level (10-23Vdc)	Left open		
Positive logic	Off	On	Off		

Various circuits for driving the EN

Transistor control

Overtemperature Protection

A temperature sensor on the converter senses the average temperature of the module. It protects the converter from being damaged at high temperatures. When the temperature exceeds the over temperature protection threshold, the output will shut down. It will allow the converter to turn on again when the temperature of the sensed location falls by the value of Over temperature Protection Hysteresis

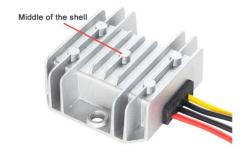
Input Undervoltage Protection

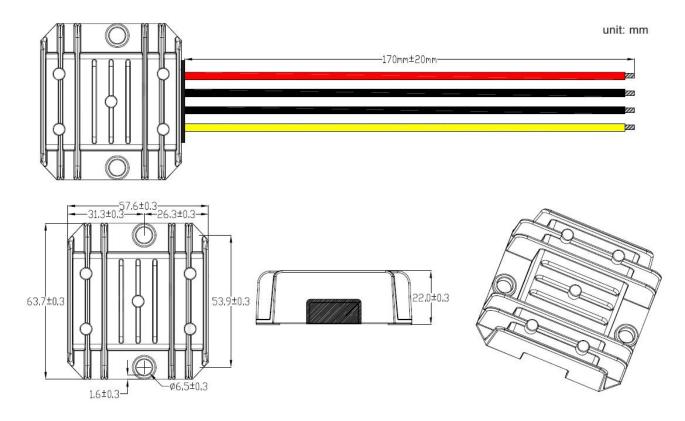
The converter will shut down after the input voltage drops below the under-voltage protection threshold for shutdown. The converter will start to work again after the input voltage reaches the input under voltage protection threshold for startup. For the Hysteresis, see the Protection characteristics.

Output Overcurrent Protection

The converter equipped with current limiting circuitry can provide protection from an output overload or short circuit condition. If the output current exceeds the output overcurrent protection set point, the converter enters hiccup mode. When the fault condition is removed, the converter will automatically restart.

Wiring Instructions


The input and output of this product is terminals. The user should ensure that the input and output wires and terminals are connected reliably, and pay attention to the wire diameter to meet the requirements of the power supply current. If the cable to be used is long, it needs Considering the voltage drop of the wire, if the voltage drop is too large, the voltage output at the load end may not meet the load demand. In this case, consider using a thicker wire diameter or reducing the length of the wire. Generally, if long wiring is required. Long line should be used on the side where the current is relatively small. For example, this product is a step-down product, so long lines should be used on the input side.


Thermal Consideration

Sufficient airflow should be provided to help ensure reliable operating of the WG-12S2401

Therefore, thermal components are mounted on the top surface of the WG-12S2401 to dissipate heat to the surrounding environment by conduction, convection, and radiation. Proper airflow can be verified by measuring the temperature at the middle of the base plate.

Dimension (unit: mm)

