

Input voltage	Output voltage	Output current	Output power	Efficiency	Size
10-20V DC	28V DC	5 Amps	140 Watts	93%	74*74*32mm

The WG-12S2805 is a Non-isolated DC-DC converter that uses a synchronous rectification technology, and features high efficiency and power density. It has the dimensions of 74mm x 74mm x 32mm (2.91 in. x 2.91 in. x 1.26 in) and provides the rated output voltage of 28V and the maximum output current of 5A.

Features

- Design meeting RoHS / CE
- High efficiency: 93% (@ 12Vin, 25℃)
- Mount in almost any location, high reliability
- Non-isolated between input and output
- Support -40 °C environment
- 100% full load burn-in test
- Over load, Low voltage protections
- Die-cast aluminum shell, epoxy potting
- Waterproof level IP68
- 1 Year warranty

Model naming method

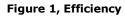
WG-12S2805

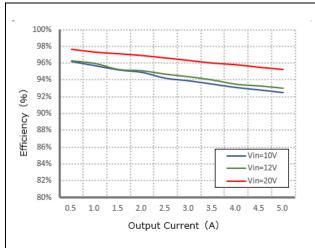
Applications

- Industrial
- Alternative Energy
- Golf Cart
- Forklift
- Electromotor
- Telecommunications
- Boat & Yacht
- Dual battery system
- LED Marketplaces and so on.
- 12 : Input voltage
- **S** : Single output type
- 28 : Output voltage
- 05 : Output current

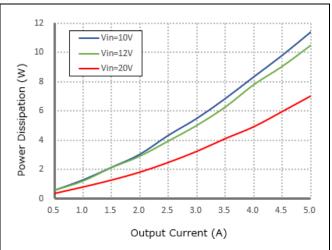
Electrical Specifications

Conditions: TA = 25 °C (77°F), Airflow = 1 m/s (200LFM), Vin =12V, Vout =28V, unless otherwise specified.						
Parameter	Min.	Тур.	Max.	Units	Remarks	
Absolute maximum ratings						
Operating ambient	-40		+55	°C		
temperature	-40	-	+55			
Shell ambient	-40	_	80	°C		
temperature	-40		80	C		
Storage temperature	-55	-	100	°C		
Operating humidity	5	-	95	%	Non-condensing	
Atmospheric pressure	62	-	106	Кра		
Altitude	-	-	4000	m		
Cooling way	-	-	-		Natural cooling	
Input characteristics						
Input voltage	10	12	20	V	-	
Max. input voltage	-	-	20	V	Continuous	
Undervoltage shutdown	9.3	9.5	9.8	V	Automatic recovery	
Undervoltage recovery	10.0	10.5	11.0	V	Automatic recovery	
Max. input current	-	-	15.3	А	Vin =10.1V; Iout =5A	
No load current	-	33	50	mA	Vin =12V	
Positive electrode cable	16	-	-	AWG	If the wire length is greater than 50cm, it is	
Negative electrode cable	16	-	-	AWG	recommended to use a thicker wire diameter.	
Enable PIN cable	-	NA	-	AWG	If the product has this feature	
Fuse	-	20	-	А	Input positive has built-in fuse	
Output characteristics						
Efficiency	-	93	-	%	Vin =12V; Iout =5A	
Output voltage	27.9	28.0	28.5	V	Vin =12V; Iout =5A	
Regulator accuracy	-	±5	-	%		
Voltage regulation	-	±3	-	%		
Load Regulation	-	±3	-	%		
Overvoltage protection	-	NA	-	V		
Output current	0	-	5	А		
Overcurrent protection	6.0	7.0	8.0	А	Vin=12V	
External capacitance	-	NA	-	μF	Don't need	
Output ripple and noise		288	500	mVp-p	Vin =10-20V; Iout=5A,	
Output ripple and hoise	-	200	500	πνρ-ρ	Oscilloscope bandwidth: 20 MHz	
Output voltage rise time	-	11	20	mS		
Boot delay time	-	12	20	mS		
Out voltage overshoot	-	-	5	%	Vin =12V, 50%-75% Load step	
Over temperature	_	_		°C	Shell test	
protection	-	_	_	J		
Short circuit protection	-	NA	-		Output can't shorted for boost converters	
Positive electrode cable	18	-	-	AWG	If the wire length is greater than 50cm, it is	
Negative electrode cable	18	-	-	AWG	recommended to use a thicker wire diameter.	




Safety and EMC features

Safety and EMC features							
	Input to Output	-	V	Lookage summent < 2 FmA 1min			
Anti-electric Strength	Input to Shell	≥500	V	Leakage current \leq 3.5mA, 1min,			
	Output to Shell	≥500	V	no breakdown, no arcing			
	Input to Output		MΩ	Test voltage = 500V			
Insulation resistance	Input to Shell	≥10					
	Output to Shell						
Other characteristics							
Weight	≤ 300		g				
Package	White box						
MTBF	≥200,000		Н	Vin= 12V; Iout= 5A			
Switching frequency	100±10		KHz				


Characteristic Curves

Conditions: TA = 25° C (77°F), Vin = 12 V, Vout = 28V, unless otherwise specified.

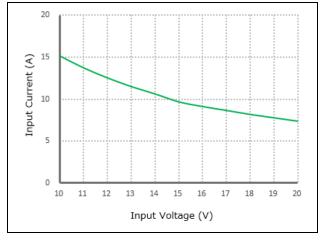


Figure 3, Input V-I, Iout=5A

Typical Waveforms

Conditions: TA = 25° C (77° F), Vin = 12V, unless otherwise specified.

Figure 4, 25% - 50% load dynamic

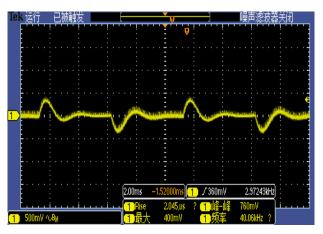
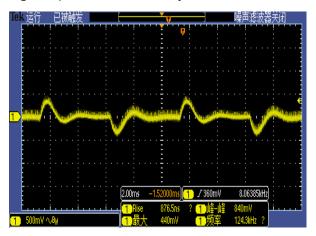
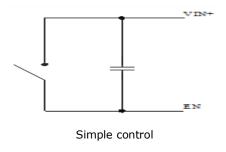
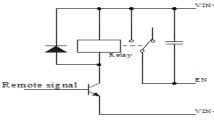



Figure 6, Output voltage established (Iout = 5A)

Tek 运行	触发?	[7	<u></u>		噪声滤波器	关闭
)				
<u>.</u>					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		: <u>.</u>
			Ň.		/ 1		: :
	: <u>.</u> :		·				
1							i contri-
2		, in the state of					
		4.00		1000ms) <mark>(1</mark>) / 6,00 V	< 10 Hz	
	<u></u>			10.59ms		29.6 V	<u></u>
(1) 10.0 V	2 51	00 V 🔤 🚺	取入 👘	29.6 V	1 观率	Hz ?)	




Feature Description

Remote On/Off (EN) (Optional)

Logic Enable	Low level (0 - 10Vdc)	High level (10-20Vdc)	Left open		
Positive logic	Off	On	Off		

Various circuits for driving the EN

Transistor control

Wiring Instructions

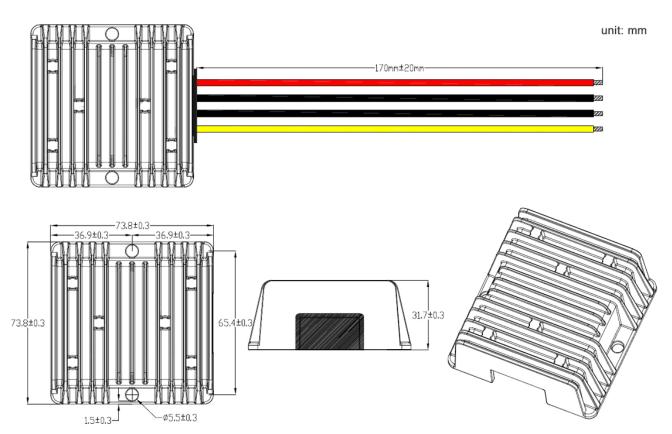
The input and output of this product is terminals. The user should ensure that the input and output wires and terminals are connected reliably, and pay attention to the wire diameter to meet the requirements of the power supply current. If the cable to be used is long, it needs Considering the voltage drop of the wire, if the voltage drop is too large, the voltage output at the load end may not meet the load demand. In this case, consider using a thicker wire diameter or reducing the length of the wire. Generally, if long wiring is required. Long line should be used on the side where the current is relatively small. For example, this product is a step-down product, so long lines should be used on the input side.

Input Undervoltage Protection

The converter will shut down after the input voltage drops below the under-voltage protection threshold for shutdown. The converter will start to work again after the input voltage reaches the input under voltage protection threshold for startup. For the Hysteresis, see the Protection characteristics.

Output Overcurrent Protection

The converter equipped with current limiting circuitry can provide protection from an output overload or short circuit condition. If the output current exceeds the output overcurrent protection set point, the converter enters hiccup mode. When the fault condition is removed, the converter will automatically restart.


Thermal Consideration

Sufficient airflow should be provided to help ensure reliable operating of the WG-12S2805

Therefore, thermal components are mounted on the top surface of the WG-12S2805 to dissipate heat to the surrounding environment by conduction, convection, and radiation. Proper airflow can be verified by measuring the temperature at the middle of the base plate.

Dimension

